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Abstract We describe in this work the numerical treatment of the Filament-Based
LamellipodiumModel (FBLM). This model is a two-phase two-dimensional contin-
uum model, describing the dynamics of two interacting families of locally parallel
F-actin filaments. It includes, among others, the bending stiffness of the filaments,
adhesion to the substrate, and the cross-links connecting the two families. The numer-
ical method proposed is a Finite Element Method (FEM) developed specifically for
the needs of this problem. It is comprised of composite Lagrange–Hermite two-
dimensional elements defined over a two-dimensional space. We present some ele-
ments of the FEM and emphasize in the numerical treatment of the more complex
terms. We also present novel numerical simulations and compare to in-vitro experi-
ments of moving cells.

1 Introduction

The lamellipodium is a flat cell protrusion functioning as a motility organelle in
protrusive cell migration [28]. It is a very dynamic structure mainly consisting of a
network of branched actin filaments. These are semi-elastic rods that represent the
polymer form of the protein actin. They are continuously remodeled by polymeriza-
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tion and depolymerization and therefore undergo treadmilling [2]. Actin associated
cross-linker proteins andmyosin motor proteins integrate them into the lamellipodial
meshwork which plays a key role in cell shape stabilization and in cell migration.
Different modes of cell migration result from the interplay of protrusive forces due
to polymerization, actomyosin dependent contractile forces and regulation of cell
adhesion [9].

The first modeling attempts have resolved the interplay of protrusion at the front
and retraction at the rear in a one-dimensional spatial setting [1, 6]. Two-dimensional
continuum models were developed in order to include the lateral flow of F-actin
along the leading edge of the cell into the quantitative picture. Those models can
explain characteristic shapes of amoeboid cellmigration [21, 22] on two-dimensional
surfaces as well as the transition to mesenchymal migration [23].

One of the still unresolved scientific questions concerns the interplay between
macroscopic observables of cell migration and the microstructure of the lamel-
lipodium meshwork. Specialized models have been developed separately from the
continuum approach to track microscopic information on filament directions and
branching structure [8, 11, 24]. However, solving fluid-type models that describe
the whole cytoplasm while retaining some information on the microstructure of the
meshwork has turned out to be challenging. One approach is to formulate hybrid
models [14], another one to directly formulate models on the computational, dis-
crete level [13]. Recently the approach to directly formulate a computational model
has been even extended into the three-dimensional setting making use of a finite
element discretization [15].

In an attempt to create a simulation framework that addresses the interplay of
macroscopic features of cell migration and the meshwork structure the Filament-
Based Lamellipodium Model (FBLM) has been developed. It is a two-dimensional,
two-phase, anisotropic continuum model for the dynamics of the lamellipodium
network which retains key directional information on the filamentous substructure
of this meshwork [20].

Themodel has been derived fromamicroscopic description based on the dynamics
and interaction of individual filaments [18], and it has by recent extensions [12]
reached a certain state of maturity. Since the model can be written in the form of
a generalized gradient flow, numerical methods based on optimization techniques
have been developed [19, 20]. Numerical efficiency had been a shortcoming of this
approach. This has led to the development of a Finite Element numerical method
which is presented in this article alongside simulations of a series of migration assays
(Figs. 1 and 2).

2 Mathematical Modeling

In this section the FBLM will be sketched (see [12] for more detail). The main
unknowns of the model are the positions of the actin filaments in two locally parallel
families (denoted by the superscripts + and −). Each of these families covers a
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Fig. 1 Graphical representation of (3); showing here the lamellipodium Ω(t) “produced” by the
mappings F± and the crossing–filament domain C

Fig. 2 Discretized lamellipodium (left) and lamellipodium fragment (right)

topological ring with all individual filaments connecting the inner boundary with the
outer boundary. The outer boundaries are the physical leading edge and therefore
identical, whereas the inner boundaries of the two families are artificial and may be
different. Filaments are labeled by α ∈ [0, 2π), where the interval represents a one-
dimensional torus, which means that in the following all functions of α are assumed
periodic with period 2π . The maximal arclength of the filaments in an infinitesimal
element dα of the ±-family at time t is denoted by L±(α, t), and an arclength
parametrization of the filaments is denoted by

{
F±(α, s, t) : −L±(α, t) ≤ s ≤ 0

} ⊂
IR2, where the leading edge corresponds to s = 0, i.e.
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{
F+(α, 0, t) : 0 ≤ α < 2π

} = {
F−(α, 0, t) : 0 ≤ α < 2π

} ∀ t , (1)

which together with ∣
∣∂sF±(α, s, t)

∣
∣ = 1 ∀ (α, s, t) , (2)

constitutes constraints for the unknowns F±. The second constraint is connected
to an inextensibility assumption on the filaments, which implies that s can also be
interpreted as a monomer counter along filaments.

We expect that different filaments of the same family do not intersect each other,
and each plus-filament crosses each minus-filament at most once. The first condition
is guaranteed by det(∂αF±, ∂sF±) > 0, where the sign indicates that the labelingwith
increasing α is in the clockwise direction. The second condition uniquely defines
s± = s±(α+, α−, t) such that F+(α+, s+, t) = F−(α−, s−, t), for all (α+, α−) ∈
C (t), the set of all pairs of crossing filaments. It has to be noted that the validity of
these properties is not guaranteed. For this and other reasons finite-time breakdown of
themodel cannot be excluded, although elements of themodel like filament repulsion
(see below) provides a regularization. As a consequence of the above assumptions,
there are coordinate transformations ψ± : (α∓, s∓) �→ (α±, s±) such that

F∓ = F± ◦ ψ± .

In the following, we shall concentrate on one of the two families and skip the super-
scripts except that the other family is indicated by the superscript ∗. The heart of the
FBLM is the force balance

0 = μB∂2
s

(
η∂2

s F
)

︸ ︷︷ ︸
bending

− ∂s (ηλinext∂sF)︸ ︷︷ ︸
inextensibility

+μAηDtF︸ ︷︷ ︸
adhesion

(3)

+ ∂s
(
p(ρ)∂αF⊥) − ∂α

(
p(ρ)∂sF⊥)

︸ ︷︷ ︸
pressure

±∂s

(
ηη∗μ̂T (φ − φ0)∂sF⊥

)

︸ ︷︷ ︸
twisting

+ ηη∗μ̂S
(
DtF − D∗

t F
∗)

︸ ︷︷ ︸
stretching

,

where the notation F⊥ = (F1, F2)
⊥ = (−F2, F1) has been used. For fixed s and t ,

the function η(α, s, t), is the number density of filaments of length at least −s at
time t with respect to α. Its dynamics and that of the maximal length L(α, t) will
not be discussed here. It can be modeled by incorporating the effects of polymeriza-
tion, depolymerization, branching, and capping (see [12]). We only note that faster
polymerization (even locally) leads to wider lamellipodia.

The first term on the right hand side of (3) describes the filaments’ resistance
against bending with the stiffness parameter μB > 0. The second term is a tan-
gential tension force, which arises from incorporating the inextensibility constraint
(2) with the Lagrange multiplier λinext(α, s, t). The third term describes friction of
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the filament network with the nonmoving substrate (see [18] for its derivation as
a macroscopic limit of the dynamics of transient elastic adhesion linkages). Since
filaments polymerize at the leading edge with the polymerization speed v(α, t) ≥ 0,
they are continuously pushed into the cell with that speed, and the material derivative

DtF := ∂tF − v∂sF

is the velocity of the actin material relative to the substrate. For the modeling of v
see [12].

The second line of (3) models a pressure effect caused by Coulomb repulsion
between neighboring filaments of the same family with pressure p(ρ), where the
actin density in physical space is given by

ρ = η

|det(∂αF, ∂sF)| . (4)

Finally, the third line of (3)models the interaction between the two families caused
by transient elastic cross-links and/or branch junctions.Thefirst termdescribes elastic
resistance against changing the angle φ = arccos(∂sF·∂sF∗) between filaments away
from the angle φ0 of the equilibrium conformation of the cross-linkingmolecule. The
last term describes friction between the two families analogously to friction with the
substrate. The friction coefficients have the form

̂μT,S = μT,S

∣
∣
∣
∣
∂α∗

∂s

∣
∣
∣
∣ ,

with μT,S > 0, and the partial derivative refers to the coordinate transformation ψ∗,
which is also used when evaluating partial derivatives of F∗.

The system (3) is considered subject to the boundary conditions

− μB∂s
(
η∂2

s F
) − p(ρ)∂αF⊥ + ηλinext∂sF ∓ ηη∗μ̂T (φ − φ0)∂sF⊥ (5)

=
{

η ( ftan(α)∂sF + finn(α)V(α)) , for s = −L ,

±λtetherν, for s = 0 ,

η∂2
s F = 0, for s = −L , 0 .

The terms in the second line are forces applied to the filament ends. The force in
the direction ν orthogonal to the leading edge at s = 0 arises from the constraint (1)
with the Lagrange parameter λtether. Its biological interpretation is due to tethering
of the filament ends to the leading edge. The forces at the inner boundary s = −L
are models of the contraction effect of actin-myosin interaction in the interior region
(see [12] for details).
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3 Numerical Method

Before discretization, the problem for each filament family is transformed to a rec-
tangular domain. For this formulation, a new anisotropic Finite Element (FE)method
is presented, and several implementational issues are discussed.

3.1 Reparametrization

The fact that the maximal filament length varies along the lamellipodium and poten-
tially with time has the consequence that the computational domain B(t) = {(α, s) :
0 ≤ α < 2π , −L(α, t) ≤ s < 0} is non-rectangular. In order to be able to use
tensor product grids, we introduce the coordinate change

(α, s, t) → (α, L(α, t)s, t) ,

with the new domain (α, s) ∈ B0 := [0, 2π)×[−1, 0). Accordingly, a weak formu-
lation of the transformed version of (3), (5) is given by

0 =
∫

B0
η

(
μB∂2s F · ∂2s G + L4μA D̃tF · G + L2λinext∂sF · ∂sG

)
d(α, s)

+
∫

B0
ηη∗ (

L4μ̂S
(
D̃tF − D̃∗

t F
∗) · G ∓ L2μ̂T (φ − φ0)∂sF⊥ · ∂sG

)
d(α, s)

−
∫

B0
p(ρ)

(
L3∂αF⊥ · ∂sG − 1

L
∂sF⊥ · ∂α(L4G)

)
d(α, s)

+
∫ 2π

0
η

(
L2 ftan∂sF + L3 finnV

)
· G

∣
∣
∣
s=−1

dα ∓
∫ 2π

0
L3λtetherν · G

∣
∣
∣
s=0

dα , (6)

with F,G ∈ H 1
α ((0, 2π); H 2

s (−1, 0)), with the modified material derivative

D̃t = ∂t −
(
v

L
+ s∂t L

L

)
∂s

and with the inextensibility constraint

|∂sF(α, s, t)| = L(α, t) .

3.2 The Finite Element Formulation

As previously, we skip the superscripts (±) except for those of the other family that
we indicate by ∗. For Nα, Ns ∈ IN we define the rectangular grid
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αi = (i − 1)Δα , i = 1, . . . , Nα + 1 , Δα = 2π

Nα

,

s j = −1 + ( j − 1)Δs , j = 1, . . . , Ns , Δs = 1

Ns − 1
,

where αNα+1 = 2π is identified with α1 = 0. Then the domain B0 = [0, 2π) ×
[−1, 0) can be decomposed into rectangular computational cells:

B0 =
Nα⋃

i=1

Ns−1⋃

j=1

Ci, j , with Ci, j = [αi , αi+1) × [s j , s j+1) . (7)

We introduce the conforming Finite Element space

V :=
{
F ∈ Cα([0, 2π ]; C1

s ([−1, 0]))2 : F
∣
∣
Ci, j

(·, s) ∈ IP1
α ,

F
∣
∣
Ci, j

(α, ·) ∈ IP3
s for i = 1, . . . , Nα ; j = 1, . . . , Ns − 1

}
,

of continuous functions, continuously differentiable with respect to s, and on each
computational cell coinciding with a first order polynomial in α for fixed s, and a
third order polynomial in s for fixed α.

For representing the elements of V , we introduce, for (a, s) ∈ Ci, j , the shape
functions

Li, j
1 (α) = αi+1−α

Δα
, Gi, j

1 (s) = 1 − 3(s−s j )2

Δs2 + 2(s−s j )3

Δs3 ,

Li, j
2 (α) = 1 − Li, j

1 (α), Gi, j
2 (s) = s − s j − 2(s−s j )2

Δs + (s−s j )3

Δs2 ,

Gi, j
3 (s) = 1 − Gi, j

1 (s),

Gi, j
4 (s) = −Gi, j

2 (s j + s j+1 − s),

(8)

which satisfy

Li, j
1 (αi ) = 1, Li, j

1 (αi+1) = 0,
Li, j
2 (αi ) = 0, Li, j

2 (αi+1) = 1,
Gi, j

1 (s j ) = 1, Gi, j
1 (s j+1) = 0, (Gi, j

1 )′(s j ) = 0, (Gi, j
1 )′(s j+1) = 0,

Gi, j
2 (s j ) = 0, Gi, j

2 (s j+1) = 0, (Gi, j
2 )′(s j ) = 1, (Gi, j

2 )′(s j+1) = 0,
Gi, j

3 (s j ) = 0, Gi, j
3 (s j+1) = 1, (Gi, j

3 )′(s j ) = 0, (Gi, j )
′(s j+1) = 0,

Gi, j
4 (s j ) = 0, Gi, j

4 (s j+1) = 0, (Gi, j
4 )′(s j ) = 0, (Gi, j

4 )′(s j+1) = 1,

(9)

and that they span IP1
α and, respectively, IP

3
s . Consequentially,we define the composite

Lagrange–Hermite shape functions (see also [3]), for (α, s) ∈ Ci, j , by
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αs

(a) HC
1

αs

(b) HC
2

αs

(c) HC
3

αs

(d) HC
4

Fig. 3 Graphical representation of the Lagrange–Hermite shape functions (10). Each one of the
shape functions attains the value 1 in one degree of freedom, and 0 on all the rest

Hi, j
1 (α, s) = Li, j

1 (α)Gi, j
1 (s), Hi, j

5 (α, s) = Li, j
2 (α)Gi, j

1 (s),
Hi, j

2 (α, s) = Li, j
1 (α)Gi, j

2 (s), Hi, j
6 (α, s) = Li, j

2 (α)Gi, j
2 (s),

Hi, j
3 (α, s) = Li, j

1 (α)Gi, j
3 (s), Hi, j

7 (α, s) = Li, j
2 (α)Gi, j

3 (s),
Hi, j

4 (α, s) = Li, j
1 (α)Gi, j

4 (s), Hi, j
8 (α, s) = Li, j

2 (α)Gi, j
4 (s),

(10)

and by Hi, j
k (α, s) = 0, k = 1, . . . , 8, for (α, s) /∈ Ci, j . Refer to Fig. 3 for a graphical

representation presentation of (10). For a scalar function, there are eight degrees of
freedom on each computational cell, which can be chosen as the function values and
the derivatives with respect to s at the vertices. These degrees of freedom are the
coefficients in a representation in terms of the basis {Hi, j

1 , . . . , Hi, j
8 }.

Consequentially, every element F of the Finite Element space V can be repre-
sented in terms of the function values Fi, j and the s-derivatives ∂sFi, j at all grid
points:

F(α, s) =
Nα∑

i=1

Ns∑

j=1

(
Fi, jΦi, j (α, s) + ∂sFi, jΨi, j (α, s)

)
, (11)

with the basis functions

Φi, j := Hi−1, j−1
7 + Hi−1, j

5 + Hi, j−1
3 + Hi, j

1 ,

Ψi, j := Hi−1, j−1
8 + Hi−1, j

6 + Hi, j−1
4 + Hi, j

2 , (12)

i = 1, . . . , Nα, j = 1, . . . , Ns .

The Finite Element formulation of the lamellipodium problem on the time interval
[0, T ] is to find F ∈ C1([0, T ]; V ), such that the weak formulation (6) holds for all
G ∈ C([0, T ]; V ).
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3.3 Time Discretization – Implementation Issues

In this section we go through all the terms in (6) and discuss their time discretization
and some implementation details. This will lead to a semi-implicit time discretization
of the problem, where at each time step a linear system has to be solved. We shall
use the superscripts n and n + 1 for the numerical approximations at the old time tn
and, respectively, the new time tn+1 = tn + Δt , i.e.

Fn(α, s) =
Nα∑

i=1

Ns∑

j=1

(
Fn
i, jΦi, j (α, s) + ∂sFn

i, jΨi, j (α, s)
)
. (13)

Finally, we shall also describe a regridding procedure in the α-direction, which has
the goal to equidistribute the computational filaments.

Resistance Against Filament Bending

The bending term is evaluated at the new time step and therefore becomes

∫

B0

ημB∂2
s F

n+1 · ∂2
sG d(α, s) ,

where forG the basis functions (12) are inserted. For the computation of the integral,
a piecewise constant approximation for η is used.

Adhesion with the Substrate

For the transport operator D̃tF in

∫

B0

ηL4μA D̃tF · G d(α, s) ,

an explicit time discretization is used, i.e., it is replaced by

Fn+1 − Fn

Δt
−

(
v

L
+ s∂t L

L

)
∂sFn .

For the computation of the integral, piecewise constant approximations for η and 1/L
were used. For the factor L4, L was approximated by piecewise linear functions.

Stretching of Cross-Links

The friction term caused by the stretching of cross-links requires the computation of
the relative velocity DtF−D∗

t F
∗, which is a subtle issue since the material derivative

of F∗ has to be evaluated at (α∗, s∗), defined by

F(α, s, t) = F∗(α∗, s∗, t) . (14)
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The computation

Δt
(
DtF(α, s) − DtF∗(α∗, s∗)

)

≈ Fn+1(α, s) − Fn(α, s) − vΔt∂sFn(α, s)

−Fn+1,∗(α∗, s∗) + Fn,∗(α∗, s∗) + v∗Δt∂sFn,∗(α∗, s∗)
≈ Fn+1(α, s) − Fn(α, s + vΔt) − Fn+1,∗(α∗, s∗) + Fn,∗(α∗, s∗ + v∗Δt)

shows that it is convenient to introduce an additional O(Δt)-discretization error,
replacing (14) by

Fn(α, s + vΔt) = F∗,n(α∗, s∗ + v∗Δt) . (15)

Another difficulty originates from the fact that the s∗-direction in the (α∗, s∗)-plane
does not correspond to the s-direction in the (α, s)-plane, and therefore it is difficult
to express the information encoded in the values of ∂s∗F∗ in terms of (α, s). We
therefore decided for approximations of the cross-link terms only in terms of the
filament positions:

Fn(α, s) =
Nα∑

i=1

Ns∑

j=1

Fn
i, j

̂Φi, j (α, s) , F∗,n(α∗, s∗) =
Nα∑

i=1

Ns∑

j=1

F∗,n
i, j

̂Φi, j (α
∗, s∗) ,

where the hat-functionŝΦi, j are piecewise bilinear. TheEq. (15) is solved for (α, s) =
(αi , s j ), i = 1, . . . , Nα , j = 1, . . . , Ns , using these representations, which involves
a search for the quadrilateral of F∗,n-positions containing Fn(αi , s j + vΔt). The
nonlinear system is then solved by using a bilinear representation of F, which allows
to solve the systemexactly. The resulting values for (α∗, s∗) are denoted by (α∗

i, j , s
∗
i, j ).

Finally, the relative velocity is approximated by

(DtF − D∗
t F

∗)(α, s) ≈
Nα∑

i=1

Ns∑

j=1

Fn+1
i, j − F∗,n+1(α∗

i, j , s
∗
i, j )

Δt
̂Φi, j (α, s)

in the cross-link stretching term

∫

B0

ηη∗L4μ̂S
(
DtF − D∗

t F
∗) · G d(α, s) , (16)

where, again η and η∗ are approximated as piecewise constant and L as piecewise
linear.

Twisting of Cross-Links

For the cross-link twisting term, a semi-implicit time discretization is used. The angle
between filaments is evaluated at each grid point and at the old time step:
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φn
i, j = arccos

(
∂sFn

i, j · ∂sF∗,n(α∗
i, j , s

∗
i, j )

)
,

with (α∗
i, j , s

∗
i, j ) computed as above. A piecewise constant approximation φn is then

obtained from averaging over grid cells. This is used in the evaluation of

∫

B0

ηη∗L2μ̂T (φn − φ0)∂sFn+1,⊥ · ∂sG d(α, s) ,

where also η and η∗ are approximated by piecewise constant functions and L by
piecewise linear functions.

Filament Repulsion

For the pressure p(ρ) with ρ = η/|∂sF · ∂αF⊥| a piecewise constant approximation
ρn evaluated at the old time step is used. It is calculated using the representation
of F given in (13) to compute cell averages of ∂s F and ∂αF . The function η is
approximated by a piecewise constant function. The pressure term is discretized
semi-implicitly as

∫

B0

p(ρn)

(
L3∂αFn+1,⊥ · ∂sG − 1

L
∂sFn+1,⊥ · ∂α(L4G)

)
d(α, s) .

As above L is approximated by a piecewise linear function, with the exception of
the coefficient 1/L , which is approximated by a piecewise constant function.

Inextensibility Constraint

With a penalization approach, the inextensibility term

∫

B0

ηL2λinext∂sF · ∂sG d(α, s)

in (6) is replaced by

∫

B0

ηL2 |∂sF|2 − L2

ε
∂sF · ∂sG d(α, s) ,

with a small positive parameter ε. We use the semi-implicit linearization

(|∂sF|2 − L2) ∂sF ≈ (|∂sFn|2 − L2) ∂sFn+1 + 2
(
∂sFn · ∂sFn+1 − |∂sFn|2) ∂sFn

and employ the augmented Lagrangian method, whence the inextensibility term
becomes

∫

B0

ηL2

((
λn + |∂sFn|2 − L2

ε

)
∂sFn+1 + 2

ε

(
∂sFn · ∂sFn+1 − |∂sFn|2) ∂sFn

)

·∂sG d(α, s) .
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After the time step is carried out, the Lagrange multiplier is updated by

λn+1 = λn + |∂sFn|2 − L2

ε
+ 2

ε

(
∂sFn · ∂sFn+1 − |∂sFn|2) .

Again, L is approximated as piecewise linear.

Spatial Equidistribution of Computational Filaments

In some simulations, the computational filaments tend to be distributed unevenly.
This is avoided by a regridding procedure, where the computational barbed ends are
evenly distributed along the leading edge, which can be achieved by a coordinate
change α → β, defined by

β = 2π
∫ α

0
|∂αF(α̂, 0, t)|dα̂

(∫ 2π

0
|∂αF(α̂, 0, t)|dα̂

)−1

.

Numerically this is realized after carrying out a time step tn−1 → tn , by defining a
piecewise linear function g(α) through its values at the grid:

g(αi ) := 2π
i−1∑

j=1

|Fn
j+1,Ns

−Fn
j,Ns

|
⎛

⎝
Nα∑

j=1

|Fn
j+1,Ns

− Fn
j,Ns

|
⎞

⎠

−1

, i = 1, . . . , Nα+1 .

Then α̃1, . . . , α̃Na+1 are determined as the solutions of

g(̃αi ) = (i − 1)Δα , i = 1, . . . , Nα + 1 .

Now the computational filaments, corresponding to α = α1, . . . , αNα+1, are replaced
by those located at α = α̃1, . . . , α̃Nα+1:

F̃
n
i, j := Fn (̃αi , s j ) , ∂̃sF

n
i, j := ∂sFn (̃αi , s j ) ,

and the density also needs to be redefined:

η̃n
i, j := ηn (̃αi , s j )

g′(̃αi )
.

This procedure can be carried out whenever needed. In the simulations of the fol-
lowing section, it was done after every time step.

4 Numerical Simulations

The purpose of this section is to demonstrate that the model is capable of predicting
the outcome of migration experiments on inhomogeneous adhesive patterns. In [12]
the effect of varying different model parameters has been demonstrated. Addition-
ally the model has been used to simulate chemotactic migration and to study the
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effect of changes in the signaling cascade on cell shape and filament density. Here
we go a step further and simulate how the shape of a migrating cell is influenced
by inhomogeneous adhesive patterns. Such studies are used to better understand
the interplay between adhesion, contraction, actin polymerization and other actin
associated proteins.

4.1 Experiment 1: Strongly Versus Weakly Adhesive Stripes

We show that model predictions are consistent with experimental data on migration
experiments published in [4]. In these experiments migrating fish keratocytes were
placed on substrates coated with distinct patterns of the extra-cellular-matrix (ECM)
protein fibronectin which binds to integrin transmembrane receptors mediating adhe-
sion. In [4] striped patterns were used featuring adhesive (fibronectin containing)
strips of 5µm width and nonadhesive strips (without fibronectin) varying between 5
and 30µm in width. In [4] it was reported that this affects cell shape in a very distinct
way. Protruding bumps on the adhesive strips and lagging bumps on the nonadhesive
stripes were observed and their width was correlated to the stripe width. Also it was
observed that cells tend to assume a symmetric shape such that they had an equal

Fig. 4 Figure reproduced from [4]: “Reversible deformation of the leading edge on line patterns.
a: ... keratocyte crawling from a 5–9 pattern ... onto an unpatterned region ... b: Deformation of
the leading edge on a 5–7 pattern with protruding bumps on adhesive stripes and lagging bumps
on non-adhesive stripes... c: Control experiment on a 5–7 line pattern where unprinted regions
(black) are not backfilled ... rendering the substrate homogeneously adhesive. Cells restore their
characteristic crescent-shaped outline ... Scale bars: 5µm”
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Fig. 5 a–i Times series of the simulation of a cell moving over a striped adhesive pattern (red)
with a 80% drop in adhesiveness (white) between adhesive strips. Shading represents actin network
density. Parameter values as in Table1. The bar represents 10µm

number of adhesive strips to the right and to the left of their cell center (Fig. 4 shows
some of the data published in [4]).

In the numerical experiment we used the same geometrical pattern with adhesive
strips of 5µm width interspaced with 7µm wide strips of reduced adhesiveness. In
the mathematical model adhesion forces result in friction between the cell and the
substrate and, speaking in numerical terms, they link one time step to the next. We
simulated the inhomogeneous adhesive pattern by decreasing the friction coefficient
by 80–90% in those regions of low fibronectin concentration as compared to adhe-
sive regions. Whilst the keratocytes in the original experiments move spontaneously
without an external signal, we simulate chemotactic cells under an external cue,
since at this point the model cannot describe the dynamics of contractile rear bundles
which stabilize autonomously migrating keratocytes. However the numerical results
show that there are many similarities as far as general behavior and morphology are
concerned, suggesting that the underlying phenomena are very similar. In Fig. 5a–i a
time series resulting from the simulation of a cell on a striped adhesive pattern with
a drop in adhesiveness of 80% is depicted. The following agreements between the
simulation and the experiments (Fig. 4) were found:

• On the striped adhesion pattern the cell shape becomes more rectangular as com-
pared to the crescent shape in the homogeneously adhesive region.

• Cells show protruding bumps on the adhesive stripes and lagging bumps on non-
adhesive stripes.

• The width of the bumps is correlated with the widths of the stripes.
• Spikes appear at the rear of the cell.
• After leaving the striped region the cell resumes its crescent shape and continues
to migrate as before.
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Fig. 6 Comparison of the cell shape for three different starting positions. Parameter values as in
Table1. The bar represents 10µm

Fig. 7 Movement of a cell on an adhesive substrate (red) with less-adhesive stripes (white). Shading
represents actin networkdensity.a 90%drop in adhesiveness,b80%drop in adhesiveness. Parameter
values as in Table1. The bar represents 10µm

To compare the influence of the starting position on the shape of the cell, the
simulation was performed with three different initial conditions differing by 2µm
shifts in the y-direction. The outcome is depicted in Fig. 6. It can be observed that
the shape of the cell starting at the lowest position (blue, dashed) differs significantly
from the other two. This is due to the fact that it interacts with the lowest adhesive
stripe causing it to shift further down as compared to the other cells.

In Fig. 7a, b a comparison between the bumps on stripes with a 90% (a) and a
80% (b) drop in adhesiveness is shown. Here the α-discretization used was twice as
fine to resolve more details. As expected bumps when adhesiveness drops by 90%
are more pronounced. Over a time interval of several minutes the amplitude of the
bumps fluctuated, an observation also made in the experiment of [4].



156 A. Manhart et al.

Fig. 8 Movement of a cell on an adhesive substrate (red) with less-adhesive spikes (white). Shading
represents actin network density. Parameter values as in Table1. The bar represents 10µm

4.2 Experiment 2: Less-Adhesive Spikes on Strongly
Adhesive Ground

Next we demonstrate the predictive capacity of the model simulating cell migration
along an adhesive path lined by irregular regions of low adhesion. The low-adhesion
pattern consists of two shifted spikes lining the trajectory of the cell from both sides.
The drop in adhesiveness was chosen to be 80%. As opposed to the situation above,
the cell is now able to almost fully avoid the less-adhesive regions. The behavior
observed over a time period of 30 min is depicted in the time series shown in Fig. 8.
The outcome of the simulation is counterintuitive in the cell does not simply slide of
the nonadhesive areas. Instead it behaves as if the less-adhesive spikes were obstacles
and only a very small portion of the lamellipodium enters the less-adhesive areas.

4.3 Parameters Values

For the discretization we used a time step of 0.12 s and nine nodes per filament. For
the first experiment we used 36 and 72 discrete filaments, for the second one 36.
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Table 1 Parameter values

Var. Meaning Value Comment

µB Bending elasticity 0.07 pNµm2 [5]

µA Macroscopic friction caused
by adhesions

0.041, 0.082,
0.41 pNminµm−2

Lower values for
less-adhesive regions,
highest value for adhesive
regions, order of magnitude
from measurements in [10,
16], estimation and
calculations in [17, 18, 20]

κbr Branching rate 10min−1 Order of magnitude from
[7], chosen to fit
2ρref = 90µm−1 [26]

κcap Capping rate 5min−1 Order of magnitude from
[7], chosen to fit
2ρref = 90µm−1 [26]

crec Arp2/3 recruitment 900µm−1 min−1 Chosen to fit
2ρref = 90µm−1 [26]

κsev Severing rate 0.38min−1 µm−1 Chosen to give
lamellipodium widths
similar as described in [26]

µI P Actin–myosin interaction
strength

0.1 pNµm−2

A0 Equilibrium inner area 450µm2 Order of magnitude as in
[25, 27]

vmin Minimal polymerization
speed

1.5µmmin−1 In biological range

vmax Maximal polymerization
speed

8µmmin−1 In biological range

µP Pressure constant 0.05 pNµm

µS Cross-link stretching
constant

7.1×10−3 pNminµm−1

µT Cross-link twisting constant 7.1 × 10−3 µm

κre f Reference leading edge
curvature for polymerization
speed reduction

(5µm)−1

For the biological parameters, we used the same as those in [12], apart from the
adhesion coefficient which was increased for the adhesive regions and decreased for
the less-adhesive regions. They are summarized in Table1.
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