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� Highly flexible Filament Based
Lamellipodium Model.

� Modeling of filament dynamics, acc-
essory proteins and polymerization
rate effects.

� Describes chemotaxis and turning
processes.

� Produces various cell shapes dep-
ending on the signal transduction
process.
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a b s t r a c t

The Filament Based Lamellipodium Model (FBLM) is a two-phase two-dimensional continuum model,
describing the dynamics of two interacting families of locally parallel actin filaments (Oelz and
Schmeiser, 2010b). It contains accounts of the filaments' bending stiffness, of adhesion to the substrate,
and of cross-links connecting the two families.

An extension of the model is presented with contributions from nucleation of filaments by
branching, from capping, from contraction by actin–myosin interaction, and from a pressure-like
repulsion between parallel filaments due to Coulomb interaction. The effect of a chemoattractant is
described by a simple signal transduction model influencing the polymerization speed. Simulations with
the extended model show its potential for describing various moving cell shapes, depending on the
signal transduction procedure, and for predicting transients between non-moving and moving states as
well as changes of direction.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In contact to flat adhesive substrates, many cell types tend to
develop thin protrusions, called lamellipodia (Small et al., 2002).
These are very dynamic structures, supported by a network of
filaments of polymerized actin, which is continuously remodeled
by polymerization and depolymerization as well as by the building
and breaking of cross-links and adhesive bonds to the substrate.

Polarization of cells due to internal instabilities (Svitkina et al.,
1997; Yam et al., 2007) or to external signals (Postlethwaite and
Keski-Oja, 1987; Gerisch and Keller, 1981; Iijima et al., 2002;
Zigmond and Hirsch, 1973) might lead to crawling movement
along the substrate. This or similar types of motility can be
observed in various cell types in natural environments, such as
fibroblasts, tumor cells, leukocytes, keratocytes, and others.

The dynamics of the filament network is a complicated process,
and effects to be taken into account, additional to what has been
mentioned above, include the nucleation of new filaments by
branching off existing filaments, deactivation of filaments by cap-
ping, and contraction by actin–myosin interaction (Lauffenburger
and Horwitz, 1996, references therein, and more references below).
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Various attempts have dealt with the formulation of mechanical
and, consequentially, mathematical models for the involved sub-
processes as well as for the whole integrated system (Mogilner,
2009 and references therein). On the level of individual actin
filaments, polymerization, depolymerization, branching, and cap-
ping are typically modeled as stochastic processes, where the
regulation of polymerization as the key process pushing the
lamellipodium outward has received the biggest attention
(Mogilner and Oster, 1996; Peskin et al., 1993). Models based on
individual filaments have provided possible explanations for var-
ious phenomena, such as the motility of pathogens in host cells
(Mueller et al., 2014). For the description of the morphology
dynamics of whole lamellipodia these models are too complex,
however. Therefore, continuum models for the mechanics of the
filament network have been used, where the choice of model is
typically guided by the expected rheological properties, such as
viscoelasticity or active contraction due to actin–myosin interaction
(Rubinstein et al., 2005; Mogilner et al., 2001; Alt and Dembo, 1999;
Gracheva and Hans, 2004).

This work is a continuation of previous efforts (Oelz and
Schmeiser, 2010b) to systematically derive a continuum model
from filament based descriptions by an averaging process similar
to homogenization of materials with microstructure. This allows to
include detailed knowledge or assumptions on all subprocesses.
We discuss the modeling assumptions of the Filament Based
Lamellipodium Model (FBLM), starting with those aspects, which
are taken from Oelz and Schmeiser (2010b) without changes.

Geometry: As common in homogenization, the averaging pro-
cess is facilitated by idealizing assumptions on the microstructure.
For lamellipodia, the two main assumptions are a restriction to a
two-dimensional model motivated by the observed small aspect
ratios (100–200 nm thickness, tens of microns lateral extension,
Small et al., 2002) and the idealization to a network consisting of
two families of locally parallel filaments crossing each other
transversally. The latter assumption is supported by experimental
evidence for steadily moving cells (Winkler et al., 2012). It has to
be conceded, however, that it is questionable in certain conditions
such as retracting lamellipodia (Koestler et al., 2008).

It is assumed that the whole cell is surrounded by the lamellipo-
dium, whose width might vary along the cell periphery. Mathema-
tically speaking, the lamellipodium has the topology of a ring lying
between two curves, the outer one representing the leading edge and
the inner one an artificially drawn boundary between the lamelli-
podium and the rest of the cell, roughly defined by a minimum actin
density. More precisely, two non-identical inner boundaries for the
two filament families are allowed.

Actin filaments are polar with so-called barbed and pointed ends. All
barbed ends are assumed to meet the leading edge (Small et al., 1978).

Filament mechanics: Filaments are assumed to resist bending.
More precisely, they are modeled as quasi-stationary Euler–Bernoulli
beams. They are assumed to be inextensible (Gittes et al., 1993).

Cross-links: The mechanical stability of the network largely
relies on the existence of cross-links between the two families.
Candidates for cross-linkers are proteins such as filamin
(Nakamura et al., 2007), but also the Arp2/3 complex providing
the connection between filaments at branch points (Mullins et al.,
1998). It is assumed that cross-linking is dynamic with the
building and breaking of cross-links as stochastic processes. While
attached, cross-links are assumed as elastic, providing resistance
against relative translational as well as rotational movement (away
from an equilibrium angle) of the two filament families (Schwaiger
et al., 2004). Characteristic life times of cross-links are assumed
to be small compared to the dynamics induced by actin polymer-
ization. The corresponding limiting process, which has been
carried out in Oelz and Schmeiser (2010b), leads to a friction
model for the interaction between the filament families.

Adhesion to the substrate: Transmembrane protein complexes
with integrins as their most important constituent provide adhe-
sive connections between the cytoskeleton and the substrate (Li et
al., 2003; Pierini et al., 2000). Similar to cross-links it is assumed
that these adhesions are transient with relatively small recycling
times, such that the averaged effect is friction between the actin
network and the substrate. The short life time of adhesions is
another questionable assumption, only satisfied for fast moving
cells, where so-called focal adhesions, i.e. large and very stable
adhesion complexes, do not occur.

The FBLM of Oelz and Schmeiser (2010b) is still rather far from
a complete description of all relevant processes. Some of these
gaps are filled by the extensions below. Most importantly, the total
number of filaments is kept fixed and their length distribution is
prescribed in Oelz and Schmeiser (2010b). Here, filaments will be
added by branching and removed by capping and subsequent
decomposition. The length distribution will be determined by a
quasi-equilibrium between polymerization and severing. In Oelz
and Schmeiser (2010b) cell size is regulated by a model for the
effect of membrane tension. Here, this will be replaced by a
contractive force in the cell center due to actin–myosin interaction.
In certain applications it might be appropriate to combine these
two effects. A further extension is a little speculative from a
modeling point of view, but stabilizes the FBLM: We introduce a
repulsive effect between parallel filaments of the same family,
motivated by Coulomb interaction caused by the significant
charges distributed along filaments. Finally, instead of a given
fixed polymerization speed as in Oelz and Schmeiser (2010b), a
model will be formulated involving both the effect of a chemo-
tactic signal and of local leading edge bending. More details about
these extensions are given in the following paragraphs.

Polymerization and degradation: A desired polymerization
speed is determined between a minimal and a maximal value,
depending on the local concentration of an activator like PIP3,
determined by a simple signal transduction model for a given
chemoattractant distribution along the leading edge. The desired
polymerization speed is modified by the pushing force depending
on the curvature of the leading edge (see Fig. 1B).

Several degradation processes of filaments are known. Aided by
proteins of the ADF/cofilin family and other severing proteins like
gelsolin (Chaponnier et al., 1986), they can depolymerize at the
pointed ends (Carlier et al., 1997), or bigger pieces of actin can be
removed. We assume a severing process (see Fig. 1A), a mathe-
matical description of which will lead to formulas for the filament
length distribution, replacing the ad hoc approximations used in
Oelz and Schmeiser (2010b).

Branching and capping: In a lamellipodium, new filaments need
to be created in order to maintain a polarized state. New filaments
are nucleated by branching off existing filaments of the other
family at or near to the leading edge (dentritic nucleation model
Mullins et al., 1998; Svitkina and Borisy, 1999). To form a branch
the presence of the Actin-Related Protein-2/3 Complex (Arp2/3) at
the membrane is necessary. Arp2/3 needs to be activated by
nucleation promoting factors. Activated Arp2/3 is incorporated in
the branches and later (e.g. upon filament degradation) reenters
the cytoplasm, from which it is again recruited to the membrane
(Machesky and Insall, 1998). Finally filaments can be capped at
their branched ends by capping proteins (Weeds and Maciver,
1993), which blocks further polymerization (see Fig. 1A). The
addition and removal of filaments had not been taken into account
in Oelz and Schmeiser (2010b).

Confinement: As a consequence of polymerization and adhe-
sion, cells would spread indefinitely according to the model
components described so far. In Oelz and Schmeiser (2010b) cell
confinement has been modeled as a consequence of membrane
tension. However, there is some experimental evidence (Svitkina
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et al., 1997) that confinement is mostly due to contractive effects
caused by actin–myosin interaction in the rear of the lamellipo-
dium. Myosin has the ability to utilize energy to move towards the
barbed ends of actin and because of its bipolar structure this leads
to contraction of antiparallel actin filaments. This mechanism
plays an important role in cell movement, because it allows the
cell to pull its rear parts (Tojkander et al., 2012; Mitchison and
Cramer, 1996; Jay et al., 1995; Chen, 1981).

We assume that the artificial inner boundary of the simulated
lamellipodium is chosen such that the actin–myosin interaction
takes place in the interior region not covered by the lamellipodium
model. The lamellipodial actin network is assumed to be con-
nected to an interior network of acto-myosin bundles providing a
contractive effect (see Fig. 1D).

Coulomb interaction: So far the model assumed no direct
interaction between filaments of the same family. Upon trying to
understand the bundling of F-actin, it was discovered that F-actin,
similar to DNA, behaves like a polyelectrolyte (Tang et al., 1997,
1996; Tang and Janmey, 1996). This means that F-actin is nega-
tively charged (about 4e/nm) at physiological conditions, hence
there exists a repulsive force between the filaments. On the other
hand, it has been shown that certain positively charged polyca-
tions, like divalent metal ions and basic polypeptides (Tang and
Janmey, 1996), which act as counterions and neutralize the
negative charges along the filament, promote filament bundling.

As a modeling assumption, we introduce a repulsive effect
between filaments of the same family (see Fig. 1C). The conse-
quential inhibition of bundle formation in the lamellipodium is
desired, since this is not our modeling goal at present (although it
will be in future work). An additional motivation is the fact that a
lack of coupling between filaments of the same family may lead to
numerical instabilities, which can be avoided by the diffusive
effect caused by repulsion.

The rest of this work is structured as follows. In the following
Section 2 the model of Oelz and Schmeiser (2010b) will be
recalled. The new aspects will be introduced in Section 3, and

the complete new model will be summarized in Section 4. Finally
in Section 5 we will demonstrate the effect of the new terms and
the potential of the full new model numerically. The power and
flexibility of the model will become especially evident in simula-
tions of the polarization process induced by a chemotactic signal,
of steady movement, and of a turning process. Movies of these
simulations including visualizations of the stochastic filament
dynamics are contained in the Supplementary Material. Examples
of moving cell shapes, influenced by the response to the chemo-
tactic signal, are shown.

2. The Filament Based Lamellipodium Model

Detailed derivations of the FBLM presented in this section can
be found in Oelz and Schmeiser (2010b) and Oelz et al. (2008), first
simulation results in Oelz and Schmeiser (2012), and analytical
results for the rotationally symmetric case in Oelz and Schmeiser
(2010a).

In the following, the superscripts þ and � refer to the two
filament families, also called clockwise and, respectively, anti-
clockwise. These superscripts will however be omitted, whenever
we concentrate on one filament family. Quantities related to the
other family will then be indicated by the superscript n.

A semi-Lagrangian description of each family is used, where
one coordinate α is a filament index varying on a torus (repre-
sented by αA ½0;2πÞ) because of the ring topology, and the other
coordinate is the negative arc-length s along a filament measured
from the leading edge, i.e. sA ½�L;0� with the maximal (simulated)
filament length L. Because of the inextensibility of filaments, s can
also be seen as a material coordinate. However, this is only true
for fixed time since, by polymerization at the leading edge with
speed vðα; tÞZ0 and the consequential inward flow of actin
relative to the leading edge, a Lagrangian coordinate would be
σ ¼ sþ R tt0 vðα; τÞ dτ. For this reason the material derivative (i.e. the

Fig. 1. New ingredients to the FBLM.
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time derivative at fixed ðα;σÞ)
Dt ¼ ∂t�v∂s

will be used below.
The main unknown in the model is Fðα; s; tÞAR2 which, for

fixed α and t, represents a parametrization of the filament with
index α at time t. By the inextensibility assumption

j ∂sFðα; s; tÞj � 1 for ðα; sÞAB≔½0;2πÞ � ½�L;0�; tZ0; ð1Þ
it is an arc-length parametrization. More precisely, F represents
the deformation of all filaments in an infinitesimal α-interval,
where the length distribution of the filaments is determined by
the given function ηðα; s; tÞ, whose value (between 0 and 1) is the
fraction of filaments with length at least j sj . The assumption that
all barbed ends meet the leading edge implies that ηðα;0; tÞ ¼ 1
and that η is monotonically increasing as a function of s. Note that
ηðα; s; tÞ dðα; sÞ can be interpreted as the total filament length in
the infinitesimal coordinate volume dðα; sÞ. In the FBLM formu-
lated below (6), η is a factor in all filament related force terms. For
example, a large value of η increases the effective bending stiffness
of computational filaments, with the interpretation that loads are
distributed over a larger number of filaments. The modeling of the
dynamics of ηðα; s; tÞ is one of the contributions of this work. In
Section 3, Eq. (12) for η will be derived, taking into account the
polymerization speed v, branching and filament degradation.

At time t, the lamellipodium is represented by the set
LðtÞ ¼Lþ ðtÞ [ L� ðtÞ with L7 ðtÞ ¼ fF7 ðα; s; tÞ : ðα; sÞABg. Note that
Lþ ðtÞ and L� ðtÞ do not have to be identical. We request, however,
that they share the leading edge, which can be motivated by the
assumption of tethering of barbed ends to the membrane (“acto-
clampin model” Dickinson, 2008; Dickinson and Purich, 2002):

F þ ðα;0; tÞ : 0rαo2π
� �¼ F � ðα;0; tÞ : 0rαo2π

� �
: ð2Þ

The artificial inner boundaries (s¼ �L) might be different.
For the interaction between the two families, the points where

filaments cross each other have to be described. This is done on
the basis of two assumptions: First, there are no crossings of
filaments of the same family, i.e. the map F7 ð�; �; tÞ : B-L7 ðtÞ is
invertible. In particular, we assume that

detð∂αF7 ; ∂sF7 Þ40 ð3Þ
holds, corresponding to a clockwise parametrization by α. Second,
for each pair of filaments from different families there is at most
one crossing, which is transversal. We need representations of the
set Lþ ðtÞ \ L� ðtÞ in the coordinate domains. First we identify all
pairs of crossing filaments:

CðtÞ≔ αþ ;α�� �
A 0;2π½ Þ2 : (s7 ðαþ ;α� ; tÞ :

n
F þ ðαþ ; sþ ðαþ ;α� ; tÞ; tÞ ¼ F � ðα� ; s� ðαþ ;α� ; tÞ; tÞ�:

Then we define the parameter domains for both families such that
F7 ðB7

C ðtÞ; tÞ ¼Lþ ðtÞ \ L� ðtÞ:
B7
C ðtÞ≔ α7 ; s7 ðαþ ;α� ; tÞ� �

: αþ ;α�� �
ACðtÞ� �

DB:

Note that, by our assumptions, the transformations

ðαþ ;α� Þ↦ α7 ; s7 ðαþ ;α� ; tÞ� � ð4Þ
from CðtÞ to B7

C ðtÞ are invertible and can be combined to transfor-
mations ψ 7 : B8

C ðtÞ-B7
C ðtÞ with the property

F8 ¼ F7○ψ 7 on B8
C ðfor fixed tÞ: ð5Þ

The positions and deformations of the filaments are computed on
the basis of a quasi-stationary force balance obtained by minimiz-
ing a potential energy functional, which contains contributions
from the bending of filaments, the stretching and twisting of
cross-links, the stretching of substrate adhesions, and the mem-
brane tension. This is coupled to age-structured population models

for the distributions of cross-links and adhesions, assuming the
building and breaking of these connections as stochastic processes.
The resulting model involves continuous delay terms, since, for the
computation of the stretching forces, past deformations of the
filaments are needed. With the model in this form, numerical
simulations would be very expensive, partially also because it
mixes different length scales. Whereas the effects of interest occur
on the (μm) scale of the width of the lamellipodium, the stretching
of cross-links and adhesions occurs on molecular (nm) scales. This
implies that motion on the lamellipodium scale of the two
filament families relative to each other and relative to the
substrate is only possible, if the turnover of cross-links and
adhesions is fast compared to other mechanisms (e.g. polymeriza-
tion and depolymerization).

The corresponding limit has been carried out formally (Oelz
and Schmeiser, 2010b) and rigorously for a simplified model
problem (Milišić and Oelz, 2011). It leads to a friction model. The
original idea seems to be more than 50 years old and has been
formulated first for the derivation of models for rubber friction
(Schallamach, 1963). Recently it has been used for the modeling of
the plastic reorganization of tissues due to cell–cell adhesion
dynamics (Preziosi and Vitale, 2011).

The assumption of fast turnover of substrate adhesions is
reasonable for fast moving cells such as fish keratocytes, but
certainly not satisfied for focal adhesions, i.e. large stable and long
lived adhesion complexes as found, e.g., in fibroblasts. The limiting
procedure removes not only the delay terms, but also the coupling
to the population models, which can be solved explicitly in
the limit.

The variational procedure involves the formulation of a Lagran-
gian functional where, besides the potential energy, also an
account of the constraints (1) and (2) is included. Variation of this
functional and, subsequently, the limit of fast cross-link and
adhesion turnover described above lead to a weak formulation of
the problem for F:

0¼
Z 2π

0
μM C�C0ð Þþ

∂αF
j ∂αF j

� ∂αðδFÞ8λtetherν � δF
� �

s ¼ 0
dα

þ
Z
B
μB∂2s F � ∂2s ðδFÞþμADtF � δFþλinext∂sF � ∂sðδFÞ
h i

η dðα; sÞ

þ
Z
CðtÞ

μS DtF�Dn

t F
n

� � � δF�
8μT ðφ�φ0Þ∂sF ? � ∂sðδFÞ

	
ηηn dðα;αnÞ; ð6Þ

for all variations δF , where the first line contains contributions
from the leading edge, and the convention ðF1; F2Þ? ¼ ð�F2; F1Þ is
used. The first term corresponds to the tension of the membrane
with the total length of the leading edge,

C≔
Z 2π

0
j ∂αF þ ðα;0; tÞj dα¼

Z 2π

0
j ∂αF � ðα;0; tÞj dα;

its prescribed equilibrium value C0, and an elasticity coefficient μM.
It is the variation of an energy describing the leading edge just as
an elastic rubber band stretched around the barbed ends of the
actin filaments (see Oelz and Schmeiser, 2010b). The Lagrange
multiplier for the constraint (2) is a function defined along the
leading edge denoted by λtether, and ν is the unit outward normal
along the leading edge. The second line of (6) deals with forces
within individual filaments: resistance against bending with
bending modulus μB, friction with the substrate caused by adhe-
sions with a friction coefficient μA, and a tangential force due to
the inextensibility constraint (1) with Lagrange multiplier λinext.
The third and fourth lines of (6) describe the effects of cross-links
between the two families with a friction term caused by resistance
against stretching of cross-links with friction coefficient μS and a
turning force term caused by resistance of twisting cross-links
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away from the equilibrium angle φ0. The angle between the
filaments is determined by

cosφðα;αn; tÞ ¼ ∂sF α; s α;αn; t
� �

; t
� � � ∂sFn αn; sn α;αn; t

� �
; t

� �
;

and μT is the corresponding stiffness parameter. The above-
mentioned limit of fast adhesion and cross-link turnover provides
explicit formulas for the coefficients μA, μS, and μT in terms of
mechanical and chemical properties of adhesion and cross-link
molecules.

A strong formulation of the Euler–Lagrange equations requires
to transform the domain of the last integral in (6) to B. For this
purpose, we use the maps from CðtÞ to BCðtÞ described in (4) and
introduce the modified friction coefficient and stiffness parameter

cμS ¼ μS ∂αn

∂s





 



 in BCðtÞ;

0 else;

8><>: cμT ¼ μT ∂αn

∂s





 



 in BCðtÞ;

0 else:

8<: ð7Þ

The expression ∂αn

∂s refers to the inverse of the map given in (4). The
strong formulation is then given by

0¼ μB∂2s η∂2s F
� �þμAηDtF�∂s ηλinext∂sF

� �
þcμSηηnΔV7∂s cμT ηηnðφ�φ0Þ∂sF ?

� �
;

where the computation of the relative velocity ΔV ¼
DtF�Dn

t F
n○ψ n and of the angle between the families,

cosφ¼ ∂sF � ð∂sFn○ψ nÞ, requires the transformation ψ n between
the coordinate domains.

The corresponding boundary conditions are

�μB∂s η∂2s F
� �þηλinext∂sF8cμT ηηnðφ�φ0Þ∂sF ?

¼
0 for s¼ �L;

7λtetherνþμM C�C0ð Þþ ∂α
∂αF
j ∂αF j

 �
for s¼ 0;

8><>:
η∂2s F ¼ 0 for s¼ �L;0:

3. Modifications and extensions

3.1. Length distribution and filament number regulation

In the model of Oelz and Schmeiser (2010b), the filament
number was conserved and the length distribution of filaments
was prescribed with a fixed maximum length. In this section the
model will be extended to include the effects of capping, branch-
ing, and severing on the filament number and length distribution.
The results partially depend on the polymerization speed, the
choice of which will be discussed below.

The changes in filament numbers by branching and capping
require a different interpretation of the length distribution
ηðα; s; tÞ. For fixed s, ηðα; s; tÞ will be considered as the number
density of filaments of length at least �s in terms of α. Instead of
the uniform distribution ηðα;0; tÞ dα¼ dα of barbed ends, values
of ηðα;0; tÞ different from one are allowed. The density of barbed
ends per leading edge length is then given by

ρðα; tÞ ¼ ηðα;0; tÞ
j ∂αFðα;0; tÞj

For the other family, the barbed end density ρnðαn; tÞ is defined
analogously. With s¼0, the map between the coordinate domains
(see (5)) reduces to a map αnðα; tÞ, and in the following ρn means
ρnðαnðα; tÞ; tÞ. In the rest of this subsection we shall deal with fixed
values of α. The dependence on α will therefore be suppressed for
ease of reading.

We start with the evolution of the number of barbed ends and
assume that it depends on the barbed end densities per unit

length:

∂tηð0; tÞ ¼ f ρ;ρn
� �j ∂αFð0; tÞj ð8Þ

where f ρ;ρn
� �

is the change of barbed end number per unit length
and time, modeling the effects of branching and capping at the
barbed ends. Capped filaments become inactive and are assumed
to be depolymerized very fast, such that they can be eliminated
from the system immediately.

It is instructive to rewrite (8) in terms of the length
x¼ R j ∂αF j dα along the leading edge, instead of the Lagrangian
variable α. With the lateral flow velocity vl ¼

R
∂t j ∂αF j dα (impli-

citly given as part of the filament dynamics), it can be written as

∂tρþ∂xðvlρÞ ¼ f : ð9Þ
Branching is assumed to be limited by the availability of

activated Arp2/3 complex at the leading edge with density a(t)
(number/leading edge unit length). Its equilibrium value in the
absence of branching is denoted by a0, the branching rate at
equilibrium Arp2/3 density by κbr, and the capping rate by κcap.
This leads to the model

f ¼ κbr
a
a0
ρn�κcapρ:

With the rate crec of recruitment and activation of Arp2/3 from the
cytoplasm, the evolution of Arp2/3 at the leading edge is governed
by

da
dt

¼ crec 1� a
a0

 �
�κbr

a
a0

ρþρn
� �

;

The second term reflects the fact that activated Arp2/3 is incorpo-
rated into branches of both families. We assume that the Arp2/3
dynamics is fast compared to branching and capping and use the
quasi-steady (Michaelis–Menten) approximation

a¼ a0crec
crecþκbr ρþρn

� �; f ðρ;ρnÞ ¼ κbrcrecρ
n

crecþκbr ρþρn
� ��κcapρ:

The model (9) has already been used in Grimm et al. (2003) with a
prescribed lateral flow velocity and with f ¼ βρn=ðρþρnÞ�γρ. A
significant difference between our model and Grimm et al. (2003)
is in the branching rate: For ρ ¼ 0 and small values of ρn, the
branching rate of Grimm et al. (2003) is constant, i.e., not limited
by the number of barbed ends of the other family, while in our
model it is approximately κbrρ

n.
An indication of the qualitative behavior of the model can be

obtained from considering a situation, where the barbed end
densities do not vary along the leading edge and are governed
by the ODE system

_ρ ¼ f ðρ;ρnÞ; _ρn ¼ f ðρn;ρÞ: ð10Þ
It is easily seen that for κbroκcap, i.e. capping exceeds branching,
the densities converge to 0, otherwise the non-trivial steady state

ρ ¼ ρn ¼ crec
2

1
κcap

� 1
κbr

 �
≕ρref ; ð11Þ

is stable. In separate work (Manhart and Schmeiser, 2015) we
prove that this qualitative behavior carries over to the correspond-
ing transport-reaction system with prescribed lateral flow
velocities.

The length distribution ηðs; tÞ of filaments is influenced by
branching and capping through the model (8) for ηð0; tÞ, but also
directly by capping, which removes whole filaments by our above
assumptions. We make the modeling decision that newly
branched filaments are capped preferentially. This means that if
branching exceeds capping, i.e., f ðρ;ρnÞZ0, we interpret f as an
effective net rate of production of new branches without further
capping, whereas in the opposite case no new filaments are
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nucleated and � f is an effective rate of capping, affecting already
existing filaments with a probability independent of their length.

Degradation of filaments is also assumed to be facilitated by the
action of severing proteins such as gelsolin (Chaponnier et al.,
1986) or ADF/cofilin (Roland et al., 2008), cutting filaments at
random positions. Similar to the capping process, we assume that
rear parts of filaments, which have been cut off, are completely
decomposed immediately.

Instead of using η as unknown, it is more intuitive to write the
model in terms of the density uðs; tÞ ¼ ∂sηðs; tÞ of filaments with
respect to their length �s. Following Edelstein-Keshet and
Ermentrout (1998), Ermentrout and Edelstein-Keshet (1998), and
Roland et al. (2008) for the severing part, we use the model

Dtu¼ κsev
Z 0

�1
Hðs�s0Þu0 �Hðs0 �sÞu½ � ds0 �κcap;effu

¼ κsev
Z s

�1
u0 ds0 þsu

 �
�κcap;effu;

where u0 abbreviates uðs0; tÞ. Cutting of a filament of length �s at
the new length �s0 occurs with the rate κsevHðs0 �sÞ leading to a
total severing rate �κsevs proportional to the length. This is the
simplest possible model. More elaborate severing rates, e.g., with
an account of aging of actin filament subunits (Roland et al., 2008),
could be included easily.

The effective capping rate is given, according to the discussion
above, by

κcap;eff ¼
ð� f ðρ;ρnÞÞþ

ρ
:

It remains to rewrite the model in terms of ηðs; tÞ ¼ R s
�1 uðσ; tÞ dσ:

Dtη¼ κsev s η�κcap;effη:

For a constant polymerization speed v this equation can be solved
explicitly by the method of characteristics:

ηðs; tÞ ¼ ηð0; tþs=vÞexp �κsevs2

2v
�
Z t

tþ s=v
κcap;eff ðτÞ dτ

 !
; ð12Þ

where ηð0; tÞ is given as the solution of (8). Assuming that the
changes of the polymerization velocity are slow compared to the
filament dynamics, this formula is a valid approximation also for
time dependent velocities v(t).

Finally, the maximum simulation length L of filaments is
defined by a cut-off at small actin densities, i.e. a value ηmin for
η. With the rough approximations of replacing ηð0; tþs=vÞ by
ηð0; tÞ and κcap;eff ðτÞ by κcap;eff ðtÞ, L can be computed explicitly:

LðtÞ≔�κcap;eff ðtÞ
κsev

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κcap;eff ðtÞ2

κ2sev
þ2vðtÞ
κsev

log
ηð0; tÞ
ηmin

 �s
; ð13Þ

resulting in the time dependent coordinate domain

BðtÞ ¼ fðα; sÞ : 0rαo2π; �Lðα; tÞrsr0g: ð14Þ
Most notably, faster polymerization leads to wider lamellipodia.

3.2. Myosin contraction

Supported by the fact that actin–myosin interaction is concen-
trated at the rear of the lamellipodium, we assume that in the
outer lamellipodium region covered by the FBLM this effect is
negligible. Therefore we model the action of myosin only as forces
pulling the (artificial) pointed ends of lamellipodial actin filaments
along the inner boundary of the simulation domain. Neglecting the
effect of other forces (such as substrate adhesion) in the interior
region, the pulling forces are assumed to add up to zero by the
action–reaction principle.

The question of an appropriate direction for the pulling forces
arises. We consider two scenarios: one where the contractile
bundles pull the filaments tangentially, and one where they pull
towards a central point, chosen as the center of actin mass
(without having particularly strong arguments for this choice).
Although one can argue for tangential pulling, which does not
perturb the directional order of filaments in the lamellipodium,
this choice has two disadvantages: If filaments get too tangential
to the inner boundary of the lamellipodium, tangential pulling
fails to control the size of the cell. Secondly, tangential pulling is a
slightly unstable process, since it might reinforce any small
deflections of the pointed ends. For those reasons and in order
to allow more flexibility of the model, we include a mixture of
both choices.

We again use the notation of dropping the superscript 7 for
the family under discussion and using n for the other one. The
magnitude of the tangential force acting on the filament with
index α is denoted by f tan ðαÞ and that of the centripetal force by
f inðαÞ. We define VðαÞ as the normalized vector pointing from the
center of mass

CM≔
Z
B
ηF dðs;αÞ

Z
B
η dðs;αÞ

 ��1

to the end Fðα; �LðαÞÞ of filament α. The forces can be included in
the boundary conditions as

�μB∂s η∂2s F
� �þηλinext∂sF8η ηnμT ðϕ�ϕ0Þ∂sF ?

¼ η f tan ∂sFþ f inV
� �

; s¼ �L:

We postulate a scalar positive quantity A, which measures
the size of the contraction effect and which is chosen as
A≔μIPðAc�A0Þþ with the area Ac encircled by the lamellipodium
and its equilibrium value A0.

The forces f tan ðαÞ and f inðαÞ are determined by the conditions
that

1. the total force should be close to the current contractility A,
2. it should be split between the tangential and centripetal

contributions according to a weight γA ½0;1�, and
3. the sum of all forces has to be zero.

Mathematically this is realized by minimizingZ 2π

0
ηðs¼ �LÞ ðf tan �γAÞ2

γ
þðf in�ð1�γÞAÞ2

1�γ

" #
dα

with the constraintZ 2π

0
ηðs¼ �LÞ f tan ∂sFðs¼ �LÞþ f inV

� 	
dα¼ 0; ð15Þ

giving

f tan ðαÞ ¼ γA½1�μ � ∂sFðα; �LðαÞÞ�; f inðαÞ ¼ ð1�γÞA½1�μ
� VðαÞ�; ð16Þ

with

μ¼
Z 2π

0
η γ∂sF � ∂sFþð1�γÞV � V
� 	

dα

 !�1 Z 2π

0
η γ∂sFþð1�γÞV� 	

dα:

In Section 5 it will be shown that myosin pulling can effectively
control cell size, and that the contraction force allows to produce
moving cells. For these reasons we neglect the contribution of
membrane tension.

3.3. Filament repulsion

We consider a repulsive effect between parallel filaments
caused by Coulomb interaction. The presence of mobile charge
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carriers in the cytoplasm leads to Debye screening with a typical
Debye length in the range of a few nm, such that only local
Coulomb interaction can be assumed, leading to a pressure-like
repulsion effect. The electrostatic energy

Upressure ¼
Z
L
ρΦ dA

is added to the potential energy, where LðtÞ is the area covered by
the filament family under discussion at time t (again dropping the
superscript 7), ρ dA is the filament length in the infinitesimal
area element dA, with

ρ¼ η
detð∂αF; ∂sFÞ

; ð17Þ

(where (3) has been used) and Φ is the electrostatic potential (see
Ramic, 2011 for a derivation from a microscopic model based on
individual filaments). A quasineutral approximation (justified by
the relative smallness of the Debye length) and an equilibrium
assumption for the mobile charge carriers result in a model for the
electrostatic potential of the form Φ¼ΦðρÞ. As example, the
Boltzmann–Poisson model for the mobile carrier density leads to
Φ¼ μPlog ðρÞ, μP40.

For the purpose of computing its variation, the electrostatic
energy is written in terms of the quasi-Lagrangian coordinates,

Upressure½F� ¼
Z
BðtÞ
ΦðρÞη dðα; sÞ;

with the variation in the direction δF,

δUpressure½F�δF ¼ �
Z
B
pðρÞ detð∂αF; ∂sðδFÞÞþdetð∂αðδFÞ; ∂sFÞ

� 	
dðα; sÞ:

The considerations below will show that for stability reasons the
pressure pðρÞ ¼Φ0ðρÞρ2 has to be a nondecreasing function of the
density ρ, which holds for the Boltzmann–Poisson model
pðρÞ ¼ μPρ. Although we expect the pressure only to act in the
direction orthogonal to the filaments, this consideration has not
entered the discussion so far. However, the action of the pressure
along filaments is eliminated by the (incompressibility) constraint
(1).

Model problem: It is instructive to look at a one-dimensional
model problem, where points with Lagrangian label αAR move
along a line with positions xðα; tÞAR (assumed a strictly increasing
function of α). The density of points is then given by ρ¼ 1=∂αx. The
electrostatic energy takes the form Upressure½x� ¼

R
Φð1=∂αxÞ dα. Its

(L2-)gradient is given by ∂αpðρÞ. If only the Coulomb interaction
and friction (i.e. adhesions) are taken into account, the dynamics is
governed by the gradient flow

∂tx¼ �∂αpðρÞ:
With the continuity equation (in Eulerian coordinates) ∂tρþ
∂xðρ∂txÞ ¼ 0, this can be rewritten in Eulerian coordinates as

∂tρ¼ ∂2xpðρÞ ¼ ∂xðp0ðρÞ∂xρÞ:
This is a nonlinear diffusion equation, where nonnegativity of the
diffusivity p0ðρÞ is necessary for stability.

For the lamellipodium model, we may hope that the pressure
term, by causing diffusion in the α-direction, avoids intersections
within a family and thereby stabilizes the system by ensuring that
the modeling assumptions are not destroyed by the dynamics. This
stabilizing effect is sometimes useful for numerical simulations as
demonstrated in Section 5.

3.4. Polymerization rate

Polymerization rates and, consequentially, polymerization
speeds vðα; tÞ are subject to different regulatory mechanisms. We
consider reaction to chemotactic signals, where the cell senses

concentration gradients of a chemoattractant and translates them
to varying polymerization rates. This leads to cell polarization and
directed movement. The chemoattractant binds to receptors on
the cell membrane that can trigger signaling pathways producing
intracellular gradients along the membrane reflecting the distri-
bution of occupied receptors. For example, higher concentrations
of PIP3 have been observed towards chemotactic signals at the
leading edge of Dictyostelium discoideum and of neutrophils (King
and Insall, 2009). This in turn is expected to induce a local
upregulation of actin polymerization (Iijima et al., 2002; Weiner
et al., 1999).

We consider constant planar chemoattractant gradients with
the chemoattractant concentration Sðx; yÞ ¼ S0þS1ðx cos ðφcaÞþ
y sin ðφcaÞÞ, where S1 determines the strength of the gradient and
φca its direction. We model a chemotactic response independent of
the strength of the chemoattractant gradient. A normalized inter-
nal quantity defined along the leading edge is given by

dcaðα; tÞ ¼
SðFðα;0; tÞÞ�minβA ½0;2πÞSðFðβ;0; tÞÞ

maxβA ½0;2πÞSðFðβ;0; tÞÞ�minβA ½0;2πÞSðFðβ;0; tÞÞ

Typically, PIP3 is only observed at a part of the leading edge,
possibly as consequence of a thresholding phenomenon of the
signaling pathway. To account for this, we choose a threshold
cA ½0;1� and define

Iðα; tÞ ¼
dcaðα; tÞ�c

1�c
for dcaðα; tÞ4c;

0 else;

8<: ð18Þ

which can be interpreted as a normalized PIP3 concentration. The
desired polymerization speed is chosen between prescribed mini-
mal and maximal values:

voptðα; tÞ ¼ vminþ Iðα; tÞ vmax�vminð Þ:

Finally, the polymerization speed is reduced by the force required
to bend the leading edge outwards. On the other hand, due to
filament tethering, we expect some acceleration of polymerization
at leading edge segments which are curved inwards. These effects
are described by an ad hoc model for the polymerization speed v,
depending on the signed local curvature κðαÞ (positive for convex
leading edge regions):

v¼ 2vopt
1þexpðκ=κref Þ

4. Full new model

The functions and variables used are the same as in the original
model described in Section 2. To account for the different width of
the lamellipodium for different filament indices α, we replace B by

BðtÞ≔ α; sð ÞjαA ½0;2πÞ; sA ½�Lðα; tÞ;0�� �
where Lðα; tÞ is given by (13), as already introduced in (14).

The full weak formulation reads

0¼
Z
BðtÞ

μB∂2s F � ∂2s δF|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
bending

þμADtF � δF|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
adhesion

þλinext∂sF � ∂sδF|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
in�extensibility

0B@
1CAη dðα; sÞ

�
Z
BðtÞ

pðρÞ det ∂αF; ∂sδF
� �þdet ∂αδF; ∂sF

� �� 	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pressure

dðα; sÞ

þ
Z
CðtÞ

μS DtF�Dn

t F
n

� � � δF|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cross link stretching

8μT ϕ�ϕ0

� �
∂sF ? � ∂sδF|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cross link twisting

0B@
1CAηηn dðα;αnÞ
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þ
Z
ð0;2π�

f tan ∂sFþ f inV
� � � δFη

s ¼ �L dα|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

myosin contraction

8

Z
ð0;2π�

λtetherν � δF



s ¼ 0 dα|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tethering

:

The filament dependent magnitude of the inner pulling force ftan
and fin is given by (16) and ρ is defined by (17). The filament
densities ηðα; s; tÞ are determined by (8) and (12).

For the strong form, i.e. the Euler Lagrange Equations, the
modified stiffness parameters are defined analogously as in (7):

0¼ μB∂2s η∂2s F
� ��∂s ηλinext∂sF

� �þμAηDtF

þ∂s pðρÞ∂αF ?� ��∂α pðρÞ∂sF ?� �
7∂s ηηncμT ðϕ�ϕ0Þ∂sF ?

� �
þηηncμS DtF�Dn

t F
n

� �
; ð19Þ

where in the equation for Fþ , the derivatives of F� are evaluated at
ðα� ðα; s; tÞ; s� ðα; s; tÞÞ and vice versa. The corresponding boundary

conditions are

�μB∂s η∂2s F
� ��pðρÞ∂αF ? þηλinext∂sF8ηηncμT ðϕ�ϕ0Þ∂sF ?

¼
η f tan ðαÞ∂sFþ f inðαÞVðαÞ
� �

for s¼ �L;

7λtetherν for s¼ 0;

(
η∂2s F ¼ 0 for s¼ �L;0: ð20Þ

5. Numerical approach, simulation results, and discussion

In this section we sketch the numerical method for the solution
of (19), (20), described in more detail in Manhart et al. (2015).
Simulations of model problems will demonstrate the effect of the
new ingredients to the model introduced in this work. Finally, the

Fig. 2. Barbed end density perturbation with and without branching/capping: the density of left-moving filaments (red) is perturbed initially, that of right-moving filaments
(dashed, blue) not. Thick lines represent the current state, thin lines represent the state at time t¼0. The left column shows the evolution in the absence of branching and
capping, i.e. κbr ¼ κcap ¼ 0. In the right column branching and capping are active with parameters as shown in Table 1, except μP ¼ 0. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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full model is used to simulate the reaction of a cell to a
chemotactic signal.

5.1. Numerical method

The numerical approximation of (19), (20) is a formidable task.
Filament families as described here are a new type of continuum,
where both analytical and numerical approaches are still in early
states of development (see Oelz and Schmeiser, 2010a, 2012 for
first results). The new numerical method used here will be
described only briefly, since it is the subject of parallel work
(Manhart et al., 2015), which we refer to for details.

Instead of dealing with the time-dependent domains B7 ðtÞ, the
equations for both families are transformed to the rectangular and
time-independent computational domain ½0;2π� � ½�1;0� by
rescaling the variable s. A rectangular grid with uniform ste-
plengths is used. The grid lines in the s-direction can be inter-
preted as computational filaments, each discretized by the same
number of grid points, independent of its (time dependent) length.

The strong anisotropy in (19) is reflected in the choice of the
finite element space for the spatial discretization. A tensor product
space is used, where on each grid cell each component of F is
represented by a fourth order polynomial, linear in α and cubic in
s. These interpolate positions and first s-derivatives at the nodes.
In other words, each computational filament is approximated by a
cubic spline with linear interpolation in between. The finite
element space is conforming for the weak formulation of (19),
being continuous in α and C1 in s and, thus, a subspace of
H1
αðð0;2πÞ;H2

s ð�1;0ÞÞ.
An implicit–explicit time discretization is used, based on a

linearization. The evaluation of the interaction terms between the
two filament families requires approximations of the mappings
ψ 7 , derived from (4), in order to represent filaments of one family
on the grid of the other. The inextensibility constraint has been
implemented by an Augmented Lagrangian approach.

5.2. Effects of new model ingredients

Filament number regulation: Branching and capping regulate
the number of barbed ends. This is of particular importance when
the polymerization rate varies along the leading edge. For an

explanation the lateral flow phenomenon is needed, i.e. the move-
ment of barbed ends along the leading edge, caused by polymer-
ization and the inclination of filaments. In our model, the
(þ)-family filaments typically move to the left (relative to the
protrusion direction), and the (�)-family filaments to the right.
Since bigger polymerization speeds increase the lateral flow, this
would lead to filament depletion in regions with higher polymer-
ization activity without the regulatory effect of branching and

Fig. 3. Effect of the actin–myosin interaction: comparison of the evolution of the
radius of a circular cell for different values of r0 and μIP. The horizontal lines mark
the values of r0. All parameters as in Table 1 except the polymerization speed
vopt ¼ 0:5 μm min�1.

Fig. 4. Polarization and movement in the presence of a chemical gradient: a time
series is shown, where the shading represents filament number, thin dashed lines
show filament shape, and the thick filaments show the movement of a left moving
(red) and right moving (blue) filament with time. Parameter values as in Table 1
with the internal signal threshold c¼0. For a movie of the simulation including a
visualization of the stochastic filament dynamics see the Supplementary Material.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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capping. This typically reduces cell motility (see the paragraph on
chemotaxis below and Fig. 6).

To observe the regulation more directly, we started with a
radially symmetric cell, where the barbed end density along the
leading edge is constant and equal to the equilibrium value (11).
Then the density of barbed ends of the ðþÞ-family is perturbed
locally. In the subsequent simulation a constant polymerization
speed is used. Fig. 2 shows the evolution of the barbed end
densities ρ7 for both families. If there is no branching and
capping, the perturbation in ηþ is simply moved to the left by
lateral flow without any changes (data not shown). The situation
for ρþ is somewhat more complicated, because the geometry
changes brought about by the higher number of filaments affects
the number of filaments per length. Both ρþ and ρ� decrease
initially because the membrane is locally pushed outward, making
the cell slightly larger. The lateral flow is also visible here by the
shift of the maximum filament number of ρþ .

For the case where branching and capping are active, one can
see how initially the number of ð�Þ-family filaments increases

because of branching. Additionally ρ7 drops everywhere, again
because the cell becomes slightly larger. However the dynamics
eventually force the number of filaments to return to its equili-
brium value everywhere.

Actin–myosin interaction: Constraint (15) ensures that the
myosin pulling on the inside of the lamellipodium is an internal
force. We define A0 ¼ r20π. Fig. 3 shows the evolution of the inner
radius of a rotational symmetric cell in time for different values of
r0 and μIP. It can be observed that smaller equilibrium areas and a
stronger myosin force (i.e. larger μIP) leads to smaller cell sizes.
This shows that the actin–myosin interaction helps to control the
cell size. In the section on chemotaxis below it will be shown that
a moving cell can pull its rear due to this effect.

Pressure: The pressure term is a force acting only within one
family. To demonstrate its effect one can therefore look at a
simplified model for one family only with: constant η, i.e. all
filaments of the same length, no polymerization or bending, and
only the tangential component of the myosin force (γ¼1). If
additionally assuming that the cell is rotationally symmetric, it is

Fig. 5. Nonmoving vs. moving steady state: left side pictures show data along the leading edge. On the horizontal axes, 0 and 1 correspond to the cell front and 0.5 to the cell
rear. The upper left picture shows the barbed end density for the stationary steady state (blue) and the moving steady state (red). The lower left picture shows the branching
(solid) and capping (dashed) rates. The two pictures on the right show the F-actin flow field, i.e. the velocity of polymerized actin relative to the substrate. Top: Stationary
steady state. Bottom: Moving steady state. Arrow length and color (values of the colorbars in μm/min) represent speed. Parameters as in Table 1.
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possible to calculate explicitly a stationary solution. Starting with
rotationally symmetric perturbations we numerically observed
convergence to the analytical steady state. This has been sup-
ported by a linearized stability analysis (Leingang, 2015). The
simplified system as well as the simulation results can be found
in the Supplemental Material.

5.3. Chemotaxis

Finally we want to demonstrate the potential of the full new
model, in particular its ability to simulate directed cell movement
in the presence of a chemotactic signal, direction changes, and

various cell shapes under different assumptions on the internal
signaling network. We point out that cell polarization and directed
movement induced by a chemotactic signal as considered here has
to be distinguished from the spontaneous polarization observed in
certain cell types such as fish keratocytes. It seems to be agreed
upon that this effect requires actin–myosin interaction in the
lamellipodium as a symmetry breaking mechanism (Kozlov and
Mogilner, 2007; Verkhovsky et al., 1999), which the FBLM in its
present form is not able to describe.

We want to point out that we are aiming at a proof of principle
and that serious comparisons with and fitting to experimental
observations are the subject of ongoing work. In particular,

Fig. 6. Movement with and without filament number regulation. First row: Retraction speed at the rear (dashed) and protrusion speed (solid) at the font of the cell. Red lines
(thick) show a cell, which can regulate filament number, blue (thin) lines a cell which cannot. Second row: Same as above, but showing the barbed end densities at the rear
(dashed) and the front (solid) for the regulated (thick) and the unregulated (thin) case. Third and fourth rows of pictures: Cell shapes at different times. Shading represents
actin density, thin gray lines the filament shape. Third row (blue, thin leading edge): Cell without regulation. Fourth row (red, thick leading edge): Cell with regulation.
Parameters as in Table 1, except in the unregulated case κbr ¼ κcap ¼ 0. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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although our parameter values (discussed below) and results are
in realistic ranges, we do not claim the simulated cell shapes to be
close to experiments for any particular cell type.

Starting to move: The following experiment mimics chemotaxis,
i.e. a situation where the cell, in reaction to a chemical stimulus
(chemoattractant) increases its polymerization rate (Iijima et al.,
2002; Weiner et al., 1999). For the effect of the chemotactic signal
on the polymerization speed we use the model introduced in
Section 3. A time evolution starting with a rotationally symmetric
cell put in a chemical gradient oriented to the right is shown in
Fig. 4. The first visible effect is that the lamellipodium on the right
grows wider. The reason is that the increased polymerization rate
also increases the maximum filament length as modeled in (13).
Next the cell starts moving, because filaments grow faster on the
right. Additionally, the wider lamellipodium at the cell front exerts
more friction than the thinner one at the cell rear. Eventually the
cell shape remains constant and the cell moves steadily towards
the right with a speed of about 3.9 μm/min, which is in the
biologically observed range (Svitkina et al., 1997; Iijima et al.,
2002). In Fig. 5 the two (numerical) steady states, the stationary
cell and the moving cell, are shown together with some data. For
the stationary cell the number of barbed ends is constant along the
leading edge, whereas in the moving cell more filaments can be
found at the back. To maintain this distribution the cell has to
balance branching, capping and movement of filaments. For the
stationary cell this simply means having branching and capping
rates equal everywhere. For the moving cell, branching dominates
at the front, whereas capping exceeds branching in the back.
Additionally, the F-actin flow, i.e. the velocity of polymerized actin
relative to the substrate is depicted in Fig. 5. For the stationary cell,
the flow is rather slow and uniform. For the moving cell one can
observe small retrograde flow at the cell front and faster flow in

the movement direction at the back, where retraction takes place.
The flow speeds and distributions found are similar to those
observed in Grimm et al. (2003).

Why filament number regulation? Fig. 6 demonstrates the
importance of filament number regulation by branching and
capping. The upper picture shows how for a cell with filament
number regulation the filament densities at the rear and at the
front remain close to each other and quite steady over time, whilst
in the unregulated case they move away from each other. This is
because in a cell where regulation is absent, filaments are
transported to the back by lateral flow, which leads to an
accumulation of filaments at the cell rear, whereas the pulling
front is depleted of filaments. The middle picture shows how this
affects protrusion speed: In the regulated case rear retraction and
front protrusion speeds approach the same value, as is necessary
for constant movement, whilst in the unregulated case rear
retraction is slower and protrusion velocities decrease with time.
In the time series below, one can see that this also affects cell
shape: In the unregulated case filaments accumulate in the back,
leading to a more prolonged shape.

A turning cell: One can ask the question if the steady state shape
of a moving cell is affected by the initial conditions. A reasonable
scenario for investigating this question, is a situation where the
chemoattractant gradient is gradually turned by 451. Fig. 7 shows
the corresponding evolution. The final shape is very close to the
original shape turned by 451.

Various moving shapes: The shape of the moving cell stro-
ngly depends on the transduction of the chemotactic signal. In
Fig. 8A–C three scenarios are depicted, where only a certain
fraction of the leading edge senses the stimulus. The more “local”
the effect of the stimulus is, the longer the cell gets, because a
smaller fraction of filaments pull the cell forward. The differences

Fig. 7. A turning cell. The picture shows the cell shapes of a turning cell over 9 min. Top left inset: The direction of the chemoattractant gradient as a function of time. Bottom
right inset: The initial state (red, dashed) and the turned final state (blue, solid) are compared. Parameter values as in Table 1. For a movie of the simulation including a
visualization of the stochastic filament dynamics see the Supplementary Material. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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Fig. 8. Different shapes of moving cells: Left pictures, A–C: Polymerization velocity along the leading edge (0 and 1 representing the cell front and 0.5 the cell rear). Left
picture, D: Barbed end density along the leading edge. Right pictures: Final shapes. Shading represents actin density, thin lines in the cells (black, dotted) the filament shapes
and lines at the leading edge (thick, blue) indicate the regions affected by the stimulus. A–C: The polymerization rate is affected, A: c¼0, B: c¼0.5, C: c¼0.7. D: The branching
rate is affected, c¼0. Parameter values as in Table 1. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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have been created in the model by variation of the threshold
parameter c in (18). The fourth shape in Fig. 8D shows results of an
alternative mechanism, where not the polymerization speed but
the branching rate is upregulated by the signal. The upregulating
mechanism is as in Fig. 8A with a maximally threefold increase of
the branching rate leading to a much denser actin network at
the front.

Parameters values: The parameter values used for the simula-
tion are the ones summarized in Table 1 unless stated differently.
Where available, values available in the literature have been used
(e.g. for μB;μA;A0; v7 ). Values for the branching and capping
parameters κbr; κcap; crec have been chosen in order to give an
equilibrium value of the total density of pushing filaments of
2ρref ¼ 90 filaments per μm leading edge (compare to (11)), which
has been observed in real cells (Koestler et al., 2008). κsev has been
chosen in order to give a lamellipodial width in the relevant range
of several μm (Small et al., 2002). Other parameters however
(μS;μT ;μP ;μIP , κref) result from averaging processes in the deriva-
tion of the model (see Oelz and Schmeiser, 2010b). In principle
they can be derived from molecular properties, but they depend in
a complicated way on quantities, where not much experimental
data is available, such as mechanical properties of cross-linker
molecules, their binding and unbinding rates, and their densities.
These parameters can be used in a fitting process. Values within
reasonable ranges have been chosen here.

5.4. Discussion

The lamellipodium is a complex system, whose dynamics is
governed by a host of chemical and mechanical processes driven
by a large number of different proteins. The FBLM provides a
modeling framework where, on the one hand, most of the relevant
processes can be accounted for and, on the other hand, numerical
simulations of the resulting models remain feasible. This is
achieved by two-dimensional modeling on the molecular level,
based on the assumptions of two dominant filament directions,
and a subsequent upscaling, leading to a continuum description.

The version of the model presented here accounts for bending,
cross-linking, substrate adhesion, repulsion, polymerization,
severing, branching, and capping of filaments as well as mem-
brane tension and contractive effects. Enriched by a simple
description of chemotactic signaling, it is able to predict cell
polarization and directed movement. From the simulation results,
data can be extracted, which are also available from light

microscopy or electron tomograms, such as actin density and
predominant filament directions.

Further model development is needed and is the subject of
future work. Most importantly, it has to be demonstrated that a
full parametrization by comparison to experimental data is possi-
ble. In the present state, biologically reasonable parameter values
are used and give quantitatively reasonable results, but to achieve
a good fit for a particular experiment is still to be done. Various
extensions of the model are conceivable. Examples are the effects
of hydrostatic pressure induced by contraction on the behavior of
the membrane, or actin–myosin interaction within the simulated
lamellipodium region. An important part of the future develop-
ment is the coupling of the FBLM with models for other cell
compartments, such as contractive actin–myosin bundles, filopo-
dia, the nucleus, and microtubuli.
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